7. Solving Linear Inequalities and Compound Inequalities

Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing a constant on the inequalities and expressing the solution set. However, if you want to practice with solving linear equations, you can refer to the previous topic. (Topic 6) This handout will show some examples on how to solve linear inequalities and compound inequalities and how to express the solution sets of inequalities.

Solve Linear Inequalities

Example (1): $\quad 3 x+8>6$
Solution:

$$
\begin{gathered}
3 x+8-8>6-8 \\
3 x>-2 \\
\frac{3}{3} x>\frac{-2}{3} \\
x>\frac{-2}{3}
\end{gathered}
$$

The solution set is $\left\{x \left\lvert\, x>\frac{-2}{3}\right.\right\}$
Place the solution set in the set-builder notation

Example (2): $\quad 3 x-2 \geq 5 x+13$
Solution:

$$
\begin{gathered}
3 x-2+2 \geq 5 x+13+2 \\
3 x \geq 5 x+15 \\
3 x-5 x \geq 5 x-5 x+15 \\
-2 x \geq 15 \\
\frac{-2 x}{-2} \leq \frac{15}{-2} \\
x \leq-\frac{15}{2}
\end{gathered}
$$

The solution set is $\left\{x \left\lvert\, x \leq-\frac{15}{2}\right.\right\}$

Simplify
Subtract 5 x on each side
Simplify

Divide -2 on each side; reverse the inequality symbol (when divide or multiply a negative number)

Place the solution set in the set-builder notation.

$$
\text { Example (3): } \quad 6(3+4 x)-2<20
$$

Solution:

$$
\begin{aligned}
& 18+24 x-2<20 \\
& 24 x+16<20 \\
& 24 x+16-16<20-16 \\
& 24 x<4 \\
& \frac{24 x}{24}<\frac{4}{24} \\
& x<\frac{1}{6}
\end{aligned}
$$

The solution set is $\left\{x \left\lvert\, x<\frac{1}{6}\right.\right\}$

$$
\text { Example (4): } \quad \frac{1}{2}(w-3)-(2-w) \leq 1
$$

Solution:

$$
\begin{gathered}
(2) \frac{1}{2}(w-3)-(2)(2-w) \leq(2) 1 \\
(w-3)-2(2-w) \leq 2 \\
w-3-4+2 w \leq 2 \\
3 w-7 \leq 2 \\
3 w-7+7 \leq 2+7 \\
3 w \leq 9 \\
w \leq 3
\end{gathered}
$$

Remove the parenthesis by multiplying 6 to 3 and 4 x .

Simplify
Subtract 16 on each side
Simplify

Divide 24 on each side. Do not reverse the inequality symbol.

Simplify
Place the solution set in the set-builder notation

Multiply 2 on each term to simplify the inequality

Simplify

Remove parenthesis. Multiply -2 to $(2-w)$

Simplify
Add 7 on each side
Simplify
Divide 3 on each side. Do not reverse the inequality symbol.

The solution set is $\{w \mid w \leq 3\}$

Place the solution set in the set-builder notation

Example (5): $\quad \frac{5 z-4}{5}>\frac{2+5 z}{3}$

Solution:

$$
\begin{array}{rlrl}
(15) \frac{5 z-4}{5} & >(15) \frac{2+5 z}{3} & & \text { Find LCD=15. Multiply } 15 \text { to each term } \\
3(5 z-4) & >5(2+5 z) & & \text { Simplify } \\
15 z-12 & >10+25 z & & \begin{array}{l}
\text { Distribute property to remove the } \\
\text { parenthesis }
\end{array} \\
15 z-12+12 & >10+12+25 z & & \text { Add } 12 \text { on each side } \\
15 z & >22+25 z & & \text { Simplify } \\
15 z-25 z & >22+25 z-25 z & & \text { Subtract } 25 z \text { on each side } \\
-10 z & >22 & & \text { Simplify } \\
\frac{-10 z}{-10}<\frac{22}{-10} & & \begin{array}{l}
\text { Divide }-10 \text { on each side. Reverse the } \\
\text { inequality symbol. }
\end{array} \\
z & <-\frac{11}{5} & & \text { Simplify }
\end{array}
$$

The solution set is $\left\{z \left\lvert\, z<-\frac{11}{5}\right.\right\}$
Place the solution set in the set-builder notation

Interval Notation

$$
[-2,3)
$$

Use the open parentheses () if the value is not included in the graph, i.e. greater than (>) or less than $(<)$. Use the brackets [] if the value is part of the graph, i.e. greater than or equal to (\geq). Whenever there is a break in the graph, write the interval up to the point. Then write another interval for the section of the graph after that part. Put a union sign " \cup " between each interval to "join" them together.

Solve Compound Inequalities (two inequalities joined by "and" or "or")

Example (1): $\quad x<3$ and $x \geq-4$
Solution: When solving compound inequalities, we usually graph them on the number lines to get the solution set.

Example (2): $\quad x<3$ or $x \geq-4$
Solution: When solving compound inequalities, we usually graph them on the number lines to get the solution set.

Example (3): $\quad x+1<9$ and $2 x-1>7$
Solution: We need to solve each inequality before we can place them on the number lines.

Interval Notation:
$(4,8)$

Example (4): $\quad x+1<2$ or $2 x-1>8$
Solution: We need to solve each inequality before we can place them on the number lines.

Example (5): $\quad-5<x+3<9$
Solution: This is a three-part inequality. We will solve this inequality a little different than previous examples. However, our goal is to isolate the variable X in the middle.

*To isolate the variable X, we need to subtract 3 in the middle as well as two sides.
*State the solution in interval notation. (you can graph the solution on the number line to help you write out the interval notation.)

Example (6): $\quad-2<7-3 x \leq 19$
Solution: This is a three-part inequality, so our goal is to isolate the variable X in the middle.

$$
\begin{aligned}
-2-7 & <7-7-3 x \leq 19-7 \\
-9 & <-3 x \leq 12 \\
\frac{-9}{-3} & >\frac{-3 x}{-3} \geq \frac{12}{-3} \\
3 & >x \geq-4
\end{aligned}
$$

$[-4,3)$
*The first thing we need to do to isolate the variable X is subtracting 7 in the middle as well as two sides.
*Next we need to divide -3 in the middle as well as two sides and Reverse the inequality symbol.

* State the solution in interval notation. (you can graph the solution to help you write out the interval notation.)

Exercises: Solve the following inequalities. Write the solution in interval notation.

1. $2 x+1 \leq-1$ or $2 x+1 \geq 3$
2. $-1<5-2 x \leq 11$
3. $2 t-3 \geq 5 t-(2 t+1)$
4. $\frac{3 x-2}{4}<\frac{2 x+1}{5}$
5. $\frac{3}{2}(1-x) \leq \frac{1}{4}-x$

Answers:

1. $(-\infty,-1] \cup[1, \infty)$
2. $[-3,3)$
3. $(-\infty,-2]$
4. $(-\infty, 2)$
5. $\left[\frac{5}{2}, \infty\right)$
